Tandem Diels-Alder *N*-Acyliminium Ion Cyclization Reactions. A New Entry into the Erythrinane Skeleton

Albert Padwa,* C. Oliver Kappe, and Thomas S. Reger

Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received May 7, 1996

The Erythrina family of alkaloids are a well-known class of natural products that have received considerable attention over the past few decades.¹ Many members of this family possess curare-like activity, and the alkaloidal extracts have been used in indigenous medicine. The vast majority of naturally occurring Erythrina alkaloids possess the tetracyclic framework and substitution pattern shown in structure **5** (Scheme 1). Following the early pioneering studies by Mondon² on the assembly of the basic erythrinane skeleton, a wide array of methods have been developed for the synthesis of this class of natural products.

Tandem or cascade processes belong to a growing family of reactions that allow the regio- and stereocontrolled formation of several carbon–carbon bonds and/ or ring systems in a single operation.³ Important contributions to this area have been realized utilizing a combination of cationic, anionic, radical, carbenoid, or pericyclic processes.⁴ Few reactions can compete with the Diels–Alder cycloaddition with respect to the degree of complexity that can be accomplished in a single synthetic step.⁵ Carbon–carbon bond-forming reactions involving *N*-acyliminium ions play an equally important role in the synthesis of nitrogen heterocycles and alkaloidal target molecules.⁶

A sequential combination of these two powerful synthetic methods would allow for the rapid, stereocontrolled synthesis of a variety of azapolycyclic products. Of particular interest to us in this context is the possibility of using 2-amino substituted furans such as 1 containing both a suitable leaving group (LG) and an olefinic tether to allow for an intramolecular Diels-Alder reaction (Scheme 1). The resulting cycloadduct **2** is expected to readily undergo ring-opening to generate a vinylogous C-acyliminium ion of type 3. Iminium ions such as 3 have great potential for undergoing subsequent cyclization chemistry.⁶ As outlined in Scheme 1, this sequence of reactions allows for a rapid entry into the erythrinane skeleton 5, where the key ABC ring system is assembled in a single operation $(1 \rightarrow 4)$, and which also allows the oxygen functionality to be placed in the appropriate position. In this paper we report on some model studies

- (3) Ho, T. L. Tandem Organic Reactions; Wiley: New York, 1992. Tietze, L. F. Beifuss, U. Angew. Chem., Int. Ed. Engl. **1993**, 32, 131. Wender, P. A., Ed. Frontiers in Organic Synthesis. Chem. Rev. **1996**, 96, 1–600.
- (4) For a recent classification of cascade/domino reactions, see: Tietze, L. F. *Chem. Rev.* **1996**, *96*, 115.
- (5) Roush, W. R. in *Advances in Cycloaddition*; Curran, D. P., Ed.;
 JAI Press: Greenwich, CT, 1990; Vol. 2, p 91.
 (6) Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic*
- (6) Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic Synthesis;* Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1047–1082.

5; X or Z = O; R = Me

leading to the stereoselective synthesis of the 3,4-benzoerythrinane skeleton utilizing this novel triple cascade process.

Recent work in our laboratory has shown that the α -thiocarbocation generated from the Pummerer reaction of an o-amido-substituted sulfoxide can be intercepted by the adjacent carbonyl group to produce an α -amino isobenzofuran.⁷ This transient intermediate then undergoes a subsequent bimolecular Diels-Alder cycloaddition with added dienophiles.⁷ This observation led us to study the intramolecular cycloaddition reaction of sulfoxides 7 and 8 (Scheme 2). Slow addition of the sulfoxides to a refluxing mixture of *p*-xylene, acetic anhydride (10 equiv), and p-toluenesulfonic acid (5 mol %)⁸ led to the formation of aminonaphthols 12 and 13 in 75 and 59% yield, respectively. The isolation of these oxindoles supports the proposed cyclization-cycloaddi*tion/ring-opening/elimination* sequence $7/8 \rightarrow 9 \rightarrow 10$ \rightarrow **11**. With these systems, the initially formed iminium ion 11 rapidly undergoes deprotonation followed by O-acetylation to afford the isolated products 12 and 13.

Having established the facility with which the requisite *N*-acyliminium ion intermediate can be formed, we next focused our attention on the final cyclization step of the proposed cascade process. The requisite sulfoxide precursor **15**, possessing a diactivated aromatic π -tether, was readily synthesized in four steps from the known carboxylic acid **14**. Subjection of **15** to the standard Pummerer reaction conditions did not lead to the desired benzoerythrinane derivative, but gave benzoindole **21** in 78% yield (Scheme 3). An analogous process occurred with the isomeric amido sulfoxide **16**, producing indole **22** in 76% yield. In both cases, the deprotonation of the initially formed iminium ion (**20**; R = H) is much faster than spirocyclization. The driving force associated with this rapid deprotonation undoubtedly involves formation

⁽¹⁾ Deulofeu, V. In *Curare and Curarelike Agents;* Bovet, D., Bovet-Nitti, F., Marini-Bettolo, G. B., Eds.; Elsevier: Amsterdam, 1959; p 163.

⁽²⁾ Mondon, A. Chem. Ber. **1959**, *92*, 1461; **1959**, *92*, 1472. Mondon, A.; Hansen, K. F. Tetrahedron Lett. **1960**, 5. Mondon, A.; Nestler, H. J. Angew. Chem., Int. Ed. Engl. **1964**, *3*, 588.

⁽⁷⁾ Kappe, C. O.; Cochran, J. E.; Padwa, A. *Tetrahedron Lett.* **1995**, *36*, 9285.

⁽⁸⁾ Watanabe, M.; Nakamori, S.; Hasegawa, H.; Shirai, K.; Kumamoto, T. *Bull. Chem. Soc. Jpn.* **1981**, *57*, 817.

Scheme 2

of the conjugated aromatic system present in products **21** and **22**.

In order to avoid the deprotonation step, we prepared sulfoxide 17 possessing a carbomethoxy group attached to the olefinic tether. Subjection of **17** to the standard Pummerer reaction conditions (toluene/Ac₂O/p-TsOH)⁸ provided a 2:1 mixture of the *N*,*S*- and *N*,*O*-ketals **23** and 24, respectively. These products are derived from bimolecular trapping of iminium ion **20** ($R = CO_2Me$) with a nucleophilic species present in the reaction medium (i.e., EtS⁻, AcO⁻). However, both of these products can be independently converted to the desired benzoerythrinane derivative 25 by heating in toluene containing 1.1 equiv of *p*-TsOH. We found it to be more convenient, however, to carry out the triple cascade sequence $(17 \rightarrow 25)$ in a one-pot fashion by first subjecting sulfoxide 17 to the Ac_2O/p -TsOH conditions, followed by treatment of the crude reaction mixture (after evaporation of solvent and excess Ac₂O) with an additional quantity (1.1 equiv) of *p*-TsOH in refluxing toluene. By using this one-pot protocol, 3,4-benzoerythrinane 25 was obtained as a single diastereomer in 65–70% yield from sulfoxide 17. Alternatively, the tandem sequence could also be triggered at 0 °C by utilizing the more electrophilic trifluoroacetic anhydride as the Pummerer promoter (CH₂Cl₂, 2 equiv of Et_3N).⁸ In this case, cycloadduct **19** (R = CO₂-Me, X = O was isolated and was converted to **25** (70%) overall) by exposure to p-TsOH (1.1 equiv) in refluxing toluene. The *cis*-stereochemistry of the A/B ring system of 25 is supported by a number of related iminium ion cyclizations reported in the literature^{1,9} and by the distinct ¹H-chemical shift of the methyl ester.¹⁰

In conclusion, the ready conversion of sulfoxide **17** into benzoerythrinane **25** represents an efficient and novel approach toward the erythrinane skeleton in which the

spirocyclic ABC ring skeleton is assembled in a single operation. This triple cascade process should be applicable toward the preparation of ring homologues of the Erythrina skeleton by simply varying the tether length of the starting sulfoxides.

Acknowledgment. We gratefully acknowledge the National Science Foundation and the National Cancer Institute (CA-26750), DHEW, for generous support of this work. C.O.K. wishes to acknowledge the Austrian Science Foundation (FWF) for an Erwin-Schrödinger-Postdoctoral Fellowship.

Supporting Information Available: Experimental details for the preparation of, as well as spectroscopic data for, all new compounds (11 pages).

JO960818W

⁽⁹⁾ Wilkens, H. J.; Traxler, F. Helv. Chim. Acta 1975, 58, 1512.

⁽¹⁰⁾ The high-field chemical shift of the methyl ester (3.21 ppm for **25** vs 3.83 for sulfoxide **17**) is due to the fact that the ester functionality present in *cis*-**25** is situated directly above the plane of the aromatic D-ring of the erythrina skeleton. This particular stereochemical relationship is only realized in the *cis*-Erythrina series and has been previously utilized to distinguish between the *cis*- and *trans*-ring fusion in Erythrina derivatives.⁹